An evolutionary decomposition-based multi-objective feature selection for multi-label classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary Multi-Objective Feature Selection

Feature selection is one of the most pervasive problems in pattern recognition. It can be posed as a multiobjective optimisation problem, since, in the simplest case, it involves feature subset cardinality minimisation and performance maximisation. In many problem domains, such as in medical or engineering diagnosis, performance can more appropriately be assessed by ROC analysis, in terms of cl...

متن کامل

Feature Selection for Multi-label Classification Problems

This paper proposes the use of mutual information for feature selection in multi-label classification, a surprisingly almost not studied problem. A pruned problem transformation method is first applied, transforming the multi-label problem into a single-label one. A greedy feature selection procedure based on multidimensional mutual information is then conducted. Results on three databases clea...

متن کامل

Multi-Objective Multi-Label Classification

Multi-label classification refers to the task of predicting potentially multiple labels for a given instance. Conventional multi-label classification approaches focus on the single objective setting, where the learning algorithm optimizes over a single performance criterion (e.g. Ranking Loss) or a heuristic function. The basic assumption is that the optimization over one single objective can i...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PeerJ Computer Science

سال: 2020

ISSN: 2376-5992

DOI: 10.7717/peerj-cs.261